《應用科學中的數學方法》發表論文,討論在一定的初始、邊界、過渡條件等條件下,物理相關過程隨時間和空間變化的線性和非線性、直接和反問題的新數學方法。歡迎發表有關生物數學內容、種群動態和網絡問題的論文。《應用科學中的數學方法》是一份跨學科的期刊:因此,所有的手稿都必須被廣泛的科學但數學水平較高的讀者所閱讀。所有的論文都必須包含精心編寫的引言和結論部分,其中應該包括對基本科學問題的清晰闡述,對數學結果的總結以及推導結果時使用的工具。此外,應該明確手稿的科學重要性及其結論。處理數值過程或只包含已建立的方法的應用的論文將不被接受。由于期刊的范圍廣泛,作者應該盡量減少使用他們的子領域的技術術語,以增加他們的論文的可訪問性,并吸引更廣泛的讀者。如果技術術語是必要的,那么作者應該清楚地定義它們,這樣就可以讓不在同一子領域工作的讀者也能理解其主要思想。
Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome.Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted.Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >