實證研究的目的是為所有分析領域的高質量原創研究及其在其他學科中的應用提供一個出口,這些學科與實證研究的主題有著明確和實質性的聯系。具體來說,那些闡明實證在其他學科(包括但不限于經濟學、工程學、生命科學、物理學和統計決策理論)中的應用的文章是受歡迎的。實證研究的范圍是發表受實證概念影響的數學及其應用領域的原創論文。這包括以下領域。有序拓撲向量空間(包括巴拿赫格和有序巴拿赫空間)正序有界算子(包括譜理論、算子方程、遍歷理論、逼近理論和插值理論)巴拿赫空間(包括幾何、無條件對稱結構、非交換函數空間和漸近理論)C和其他算子代數(特別是非交換序理論)函數分析的幾何和概率方面偏微分方程(包括極大原理、擴散、橢圓和拋物線方程;和上)函數方程的正解積極的半群勢能理論和調和函數諧波分析變分分析和變分不等式優化與最優控制凸和非光滑分析互補理論最大元素的原則測度理論(包括布爾代數和隨機過程)非標準分析和布爾值模型上述領域在其他學科和領域的應用
The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome.The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.This includes the following areas.ordered topological vector spaces (including Banach lattices and ordered Banach spaces)positive and order bounded operators (including spectral theory, operator equations, ergodic theory, approximation theory and interpolation theory)Banach spaces (including their geometry, unconditional and symmetric structures, non-commutative function spaces and asymptotic theory)C and other operator algebras (especially non-commutative order theory)geometric and probabilistic aspects of functional analysispartial differential equations (including maximum principles, diffusion, elliptic and parabolic equations; and subsolutions)positive solutions for functional equationspositive semigroupspotential theory and harmonic functionsharmonic analysisvariational analysis and variational inequalitiesoptimization and optimal controlconvex and nonsmooth analysiscomplementarity theorymaximal element principlesmeasure theory (including Boolean algebras and stochastic processes)non-standard analysis and Boolean valued modelsApplications of the above fields to other disciplines and areas
SCI熱門推薦期刊 >
SCI常見問題 >
職稱論文常見問題 >
EI常見問題 >