摘 要:學生在高中學習時期,往往面臨很巨大的課業(yè)壓力。特別是在學習數(shù)學時,應高度重視解題能力的有效培養(yǎng)。很多高中生在解數(shù)學時,常常會覺得力不從心。盡管已經(jīng)掌握了必要的知識點,但在具體到解題時,卻常常不知所措,以至于頻繁犯錯。高中生為了提升數(shù)學成績,就應注意掌握題目的要點和解題的技巧,逐步提升自己的解題能力。為此,本文從高中數(shù)學出發(fā),主要針對解題教學現(xiàn)狀,探討了有效提高學生自主解題能力的常用措施。
本文源自劉曉華, 高考 發(fā)表時間:2021-05-07《高考》作為唯一以高校招生考試命名的期刊,《高考》始終強調“考試導向”,以全面提升考生的應試能力和考試成績?yōu)槟繕?,突出考試刊物與一般教輔刊物的差異性。隨著互聯(lián)網(wǎng)時代的到來。旨在反映國內外教育教學科研實踐的最新成果,服務于科教興國戰(zhàn)略。
關鍵詞:解題能力;高中數(shù)學;提高措施
高中階段是學生一生中很重要的階段,尤其是高考,真可謂是學生成長中的一個關鍵轉折點。其中的數(shù)學成績無疑相當重要,所以高中生很有必要學好數(shù)學。在數(shù)學學習中,唯有活學活用方才能事半功倍。但高中數(shù)學普遍題量大,解題難度也很大,常常令學生十分懊惱。所以,學生應高度重視解題過程的規(guī)范性,注意理順解題思路,適當簡化題目,不斷提升解題能力,進而才能順利正確解題。
一、高中生數(shù)學學科解題能力的重要性
在高中階段,涉及的數(shù)學知識往往相對復雜,并且散亂著豐富的知識點。為了系統(tǒng)化地掌握理論知識,具有一定的困難,并且不容易歸納整理。因此,許多學生在日常的解題中,常常找不到最佳的方式,以至于頻頻走彎路,而無法正確解決問題。然而,通過認真歸納分析可知,其實數(shù)學解題存在一定的規(guī)律,具有很強的聯(lián)系和邏輯性。僅需教會學生適宜的解題思路,引導學生及時歸納整理,便可逐步增強其中的奧秘與規(guī)律,順利完成解題任務。所以,作為數(shù)學教師應在日常的教學工作中,準確把握重難點教學內容,重點培養(yǎng)學生必要的解題能力,教會學生正確規(guī)范的解題方式。例如,針對方程及不等式解題,需要引導學生正確結合數(shù)形來解題:已知 2a2 x2 +2ax-a2 +1=0,問當 a 是何值時,方程的兩個根位于(- 1,1)區(qū)間?經(jīng)過數(shù)形結合分析,可知如果二次函數(shù)和橫軸的交點位于(- 1,1)區(qū)間,就應滿足:
通過正確解答,就能很輕松地得出 a 的取值區(qū)間。這樣學生便能真正享受到成功解題的樂趣,從而對數(shù)學學習產(chǎn)生濃厚的興趣。
二、高中數(shù)學當前的解題教學現(xiàn)狀
高中數(shù)學作為十分靈活的一門學科,其中的基礎知識學習與解題能力的教育屬于高中生著重要求學習、探究的重點內容。所以,在學習中老師應積極幫助學生打好學習興趣基礎,并引導學生認真進行鉆研。但是,高中數(shù)學往往學習起來十分困難,尤其是針對部分十分特定的題型,還應專門歸納總結解題方法。就各種新題型,均需要學會做到舉一反三。考慮到高中數(shù)學難以理解的情況,所以,很多學生的學習態(tài)度并不端正,以至于無法真正把控住解題的各個步驟,進而也就很難輕松、順利地解題。
同時,高中生通過數(shù)學學習,還應力爭提升數(shù)學成績。在高中數(shù)學的日常教育中,解題能力屬于相當重要的內容。然而,高中生若要在短期內,提升解題方面的能力,其實并不容易,尤其是在很多老師普遍忽視合作學習的環(huán)境下。作為高中生,唯有逐步進行系統(tǒng)化的合作努力,方才能漸漸提升解題能力。但在數(shù)學學習中,大多數(shù)學生普遍看到數(shù)學題便十分害怕,甚至不知所措。
而縱觀國內數(shù)學教學可知,很多數(shù)學教師也還是通過一味的演講,來向學生傳遞數(shù)學知識,甚少引導學生加強教材知識學習。這種傳統(tǒng)的落后教學模式,很難激起高中生學習數(shù)學的興趣愛好。同時,還有部分學生也有待端正自己的學習態(tài)度,依然好玩愛動,在聽講時難以集中自己的注意。而大多數(shù)學生甚至根本就并不重視數(shù)學學習,常常抱著驕傲、自大、滿足的心理,常常認為自己學會了各數(shù)學知識點,而不再樂意耗費更多的心思。這么一來,很多學生就不會明白數(shù)學學習其實必須長期不懈地努力,而難以提高數(shù)學成績,最終令解題能力也一再變弱。
若這些學生不甚了解數(shù)學學習中遇到的問題,僅看著數(shù)學解題的整個過程及基礎結構,不會在生活實際中代入數(shù)學知識,便難以增強錯題思考總結與分析解答能力,平時學習數(shù)學起來也不夠靈活,嚴重欠缺學習創(chuàng)新思維。這么一來,在如此多的高中數(shù)學題量下,便令學生非常難全面掌握解題技巧,而帶給數(shù)學老師無盡的煩惱。但是,這并不是指老師無法幫助學生增強解題能力,而學生也就無法真正學好數(shù)學。其實在引導學生解題中,老師只要積極促進學生及時理順解題思路,并在認真學習、合作探究等的過程中,真正理解解題的靈魂,進一步簡化題目,還是可以順利解題并逐步提高分析解題能力的。
三、數(shù)學教學中促進高中生提高數(shù)學解題能力的有效措施
(一)引導學生端正解題態(tài)度
高中生為了逐步提升解題能力,就應先端正自己的解題態(tài)度,形成認真、仔細審清題意的好習慣。學生在審題的過程當中,要先大致讀懂題意,再深入思考、分析題目中的有關知識點,然后結合要解的問題展開思考過程。這樣便需要學生長時間的努力與堅持,在平時學習、練習中,積極端正態(tài)度,從而在解題的過程中,才能先弄懂題目,大致了解題目所求,全面挖掘題目中的已知條件,弄清題目中不同條件的聯(lián)系與邏輯性,再找準問題解答的切入點,基本了解題目中涉及的知識點,進而融合數(shù)學解題方法、技巧,理順解題思路,最終正確解題。但當前,大多數(shù)學生在審題上卻不夠仔細,而若想正確解答一道數(shù)學題,就應先審好題,形成好的審題習慣,從而打好提升解題能力的基礎。譬如,針對證明“在 3 個數(shù)字中,至少存在一個數(shù)字不小于零和一個大于零的數(shù)字”的題目,就可以引導學生從題目要求出發(fā),靈活結合解題方法及技巧,挖掘出題目隱含的三個數(shù)字之和為零的條件,并靈活運用反證法,來迅速解題。又如,求解: x+2x2 +3x3 +4x4 +…+nx (x ≠ 0)。在解題中,應先假設 {an}、{bn} 分別是等差數(shù)列、等比數(shù)列,且 a1、b1 均為 1,a3 和 b5 之和是 21,a5 和 b3 之和是 13,先求得通項公式,再得出數(shù)列 {an/ bn} 前面 n 項及 Pn。這樣便可以引導學生認真分析題意,靈活運用錯位相減法求解。
(二)引導學生合作學習
通過數(shù)學題目的設置,主要旨在考查學生靈活運用及理解知識的能力。在高中往往涉及較多要記的數(shù)學公式及原理,所以學生難以面面俱到,在數(shù)學學習中不免漏洞百出。而基于合作學習,便有助于學生及時糾正錯誤、彌補學習中的漏洞。所以,在教學中,教師應注意創(chuàng)新展開合作教學,按特點分組法,從學生學習特點出發(fā),統(tǒng)一劃分小組,引導學生在分析思考問題時,可以彼此補充思路、激勵,以引導學生深入思考問題。同時,還應留給學生充裕的學習時間及學習空間,交還給學生合作主動權,引導他們按學習需要,自由決定合作學習的時間和內容。譬如,針對題目:已知 x2 +y2 =r2 ,求 M (x0,y0)上得出的切線方程,可以引導學生分小組分別解答這道題目下的三道子題:(1)已知圓 x2 +y2 =r2 上面的 M(x0, y0),(不是圓心 O),求 x0x+y0y=r2 與圓 O 交點的個數(shù)?(2)已知在圓 x2 +y2 =r2 外的 M(x0,y0),則 x0x+y0y=r2 的幾何意義是何?(3)已知圓 x2 +y2 =r2 內的 M(x0,y0)(不是圓心 O),證明:經(jīng)過點 M 弦(不含直徑)的端點與圓相切兩直線的交點變化軌跡就是 x0x+y0y=r2 。學生在合作中,通過變式訓練,并相互交流討論,便可以一起總結解題規(guī)律、掌握解題技巧,進一步提升解題能力。這么一來,學生便可以互補學習優(yōu)勢、習慣、創(chuàng)新思維,從而更加全面、輕松地解決問題。
(三)引導學生加強教材知識學習
在數(shù)學學習中,應兼顧理論知識與實踐訓練。針對教材知識教學和解題訓練,數(shù)學老師需要明確主次輕重,引導學生知曉題型其實是圍繞教材知識變化的。雖然數(shù)學知識結構復雜,新題型也頻頻出現(xiàn),但是這些新出題往往具有一樣的性質,考查的都是教材上的知識。在一種題型中,往往牽涉諸多小知識點,需要按知識點分步解題。一旦某知識點分析錯誤,就定會偏離正確解題方向。所以,面對龐大的題庫,學生要想自如應對,就需要教師“授人以漁”。針對基礎知識,教師應透徹分析,引導學生深入理解其中細節(jié)內容,接受必要的訓練。所以,教師應在日常教學中加強知識點建設,并在練習中全面補充,引導學生加深記憶印象。譬如,在講解“簡單邏輯連接詞”時,便可以詳細展開教材內容。考慮到邏輯連接詞充分體現(xiàn)了知識的嚴謹性,所以在教學中要引導學生深入思索關鍵字詞的含義。在邏輯連接詞上,一般一字之差就會引申多重含義,一不小心就會錯誤理解。這樣教師便可以通過實例內容“12 可以被 4 整除且 12 也可以被 3 整除, 10 能被 5 或 2 整除”,引導學生深入理解其中的“且”、“或” 字眼表達的不同意思。針對“命題之間聯(lián)系”的知識點,老師便要基于教材知識,引導學生明白“有假即假,全真才真” 的意思。這樣學生便可以熟悉生硬的知識,并基于數(shù)學口訣,進一步加深記憶理解。
(四)引導學生在生活實際中代入數(shù)學知識
針對抽象的數(shù)學知識,學生往往需要想象、聯(lián)系,才能加深理解。但學生往往只有十分的有限的理解能力,面臨與自己思維偏離的知識點常常會很迷茫,無法正確理解,進而很難正確解讀、分析題目,以至于降低解題效率、無法提升解題能力,甚至逐步失去學好的信心。這便需要教師充分正視數(shù)學教學中存在的短板,充分結合抽象知識學習和生活實際,深入挖掘有關數(shù)學知識的生活現(xiàn)象和事件,利用舉例、實踐促進學生理解。其實數(shù)學知識往往現(xiàn)實需要為基礎,在現(xiàn)實生活中不乏和數(shù)學知識關聯(lián)的內容。譬如,在講解“隨機抽樣”時,就可以與生活現(xiàn)象聯(lián)系起來,引導學生分析質檢局或者海關常用的抽檢方式:“有關部門按一定比例抽檢或從一定數(shù)量的貨物中選取要進行檢查的物品”等。這樣學生常常會習慣性地誤以為隨機抽象存在偶然性,而教師就要及時更正他們的錯誤思想,令其認識到經(jīng)實踐已證實這樣的檢驗其實很科學。然后,教師便可以帶領學生進一步探討“隨機簡單抽樣”存在的有效性。這樣從理論到實踐論證,便可以結合數(shù)學和生活實際,引導學生逐步提升解題能力。
結束語
在高中階段,數(shù)學作為相當重要的學科之一,往往涉及很復雜的題目和豐富的變換形式。所以,學生為了學好數(shù)學,便應掌握正確的解題方法,不斷提升解題能力,從而加快解題速度、獲得更好的數(shù)學成績。
論文指導 >
SCI期刊推薦 >
論文常見問題 >
SCI常見問題 >