本篇文章是由《中學數學雜志》發表一篇數學論文,宣傳黨的教育方針,介紹數學教育的新觀點、新發展以及先進的教學經驗和優秀的教研成果。積極扶持教壇新人,推動和促進廣大數學教師教育思想的轉變和教學水平的提高。關注廣大中學生的數學學習和發展。努力于提高全民數學素質。突出“科學性、實用性、指導性、服務性”。關注新課改,向讀者提供最新的教研成果和教學經驗,為中學生的數學學習排難解疑。
分析和解決問題的能力是指能閱讀、理解對問題進行陳述的材料;能綜合應用所學數學知識、思想和方法解決問題,包括解決在相關學科、生產、生活中的數學問題,并能用數學語言正確地加以表述.它是邏輯思維能力、運算能力、空間想象能力等基本數學能力的綜合體現.在日常教學中,我們應有意識的培養學生分析和解決數學問題的能力。
1.重視通性通法教學,引導學生概括、領悟常見的數學思想與方法
數學思想較之數學基礎知識,有更高的層次和地位.它蘊涵在數學知識發生、發展和應用的過程中,它是一種數學意識,屬于思維的范疇,用以對數學問題的認識、處理和解決.數學方法是數學思想的具體體現,具有模式化與可操作性的特征,可以作為解題的具體手段.只有對數學思想與方法概括了,才能在分析和解決問題時得心應手;只有領悟了數學思想與方法,書本的、別人的知識技巧才會變成自已的能力.
每一種數學思想與方法都有它們適用的特定環境和依據的基本理論,如分類討論思想可以分成:(1)由于概念本身需要分類的,象等比數列的求和公式中對公比 的分類和直線方程中對斜率 的分類等;(2)同解變形中需要分類的,如含參問題中對參數的討論、解不等式組中解集的討論等.又如數學方法的選擇,二次函數問題常用配方法,含參問題常用待定系數法等.因此,在數學課堂教學中應重視通性通法,淡化特殊技巧,使學生認識一種“思想”或“方法”的個性,即認識一種數學思想或方法對于解決什么樣的問題有效.從而培養和提高學生合理、正確地應用數學思想與方法分析和解決問題的能力.
2.加強應用題的教學,提高學生的模式識別能力
高考是注重能力的考試,特別是學生運用數學知識和方法分析問題和解決問題的能力,更是考查的重點,而高考中的應用題就著重考查這方面的能力,這從新課程版的《考試說明》與原來的《考試說明》中對能力的要求的區別可見一斑.(新課程版將“分析和解決問題的能力”改為“解決實際問題的能力”)
數學是充滿模式的,就解應用題而言,對其數學模式的識別是解決它的前提.由于高考考查的都不是原始的實際問題,命題者對生產、生活中的原始問題的設計加工使每個應用題都有其數學模型.如1997年的“運輸成本問題”為函數與均值不等式;1998年的“污水池問題”為函數、立幾與均值不等式;1999年的“減薄率問題”是數列、不等式與方程;2000年的“西紅柿問題”是分段式的一次函數與二次函數等等.在高中數學教學中,不但要重視應用題的教學,同時要對應用題進行專題訓練,引導學生總結、歸納各種應用題的數學模型,這樣學生才能有的放矢,合理運用數學思想和方法分析和解決實際問題.
3.適當進行開放題和新型題的訓練,拓寬學生的知識面
要分析和解決問題,必先理解題意,才能進一步運用數學思想和方法解決問題.近年來,隨著新技術革命的飛速發展,要求數學教育培養出更高數學素質、具有更強的創造能力的人才,這一點體現在高考上就是一些新背景題、開放題的出現,更加注重了能力的考查.由于開放題的特征是題目的條件不充分,或沒有確定的結論,而新背景題的背景新,這樣給學生在題意的理解和解題方法的選擇上制造了不少的麻煩,導致失分率較高.因此,在高中數學教學中適當進行開放題和新型題的訓練,拓寬學生的知識面是提高學生分析和解決問題能力的必要的補充.
4.重視解題的回顧
在數學解題過程中,解決問題以后,再回過頭來對自己的解題活動加以回顧與探討、分析與研究,是非常必要的一個重要環節.這是數學解題過程的最后階段,也是對提高學生分析和解決問題能力最有意義的階段.
解題教學的目的并不單純為了求得問題的結果,真正的目的是為了提高學生分析和解決問題的能力,培養學生的創造精神,而這一教學目的恰恰主要通過回顧解題的教學來實現.所以,在數學教學中要十分重視解題的回顧,與學生一起對解題的結果和解法進行細致的分析,對解題的主要思想、關鍵因素和同一類型問題的解法進行概括,可以幫助學生從解題中總結出數學的基本思想和方法加以掌握,并將它們用到新的問題中去,成為以后分析和解決問題的有力武器.
論文指導 >
SCI期刊推薦 >
論文常見問題 >
SCI常見問題 >